S-Matrix Uniqueness from Soft Theorems

Laurentiu Rodina

IPhT, CEA Saclay

May 17, 2018

Based on work with Nima Arkani-Hamed + Jaroslav Trnka (Dec. 2016)

Motivation
 Why scattering amplitudes

- Fundamental limit to accuracy in QG due to black holes
- Locality and unitarity break down; cannot be fundamental in QG
- Lagrangian (non-manifestly deterministic) crucial and natural for Classical Mechanics (deterministic) \rightarrow Quantum Mechanics (non-deterministic)
- A non-manifestly local and unitarity S-matrix: a Lagrangian for the 21st century?
- Main result: S-matrix is fully fixed by gauge invariance or soft theorems (including some higher order corrections): locality and unitarity emerge automatically; soft behavior contains surprisingly amount of information

Basic principles of scattering amplitudes Locality and Unitarity

- Locality: singularities have a form $1 /\left(\sum_{i} p_{i}\right)^{2}$, and can be associated to propagators of tree graphs

$$
\frac{1}{\left(p_{1}+p_{2}\right)^{2}\left(p_{1}+p_{2}+p_{3}\right)^{2}}
$$

- Unitarity: when any propagator goes on-shell the amplitude must factorize into two lower point amplitudes

$$
(P)^{2} A_{n}(1,2 \ldots n) \rightarrow A_{L}(1 \ldots P) \times A_{R}(-P \ldots n)
$$

Basic principles of scattering amplitudes Gauge invariance

- Amplitude must vanish when some $e_{i} \rightarrow p_{i}$
- We need gauge invariance to make Lorentz invariance, locality and unitarity manifest
- Non-trivial that the amplitude (in Feynman diagram form) is gauge invariant (needs momentum conservation, and cancellations between diagrams)

Basic principles of scattering amplitudes Adler zero

- Some special scalar theories must vanish when one scalar becomes soft, $p_{i}=z p_{i}$, with $z \rightarrow 0$
- In some sense the Adler zero is like gauge invariance for scalar theories (and similarly non-trivial to see)
- How fast the amplitude vanishes depends on the theory:

$$
\begin{aligned}
\text { Non-linear sigma model } & \sim \mathcal{O}(z) \\
\text { Dirac-Born-Infeld } & \sim \mathcal{O}\left(z^{2}\right) \\
\text { Special Galileon } & \sim \mathcal{O}\left(z^{3}\right)
\end{aligned}
$$

Basic principles of scattering amplitudes Soft theorems

- When a particle is taken soft, by sending $p_{n+1}=z q, z \rightarrow 0$, the amplitude factorizes as:

$$
A_{n+1} \rightarrow\left(\frac{1}{z} S_{0}+z^{0} S_{1}+\ldots\right) A_{n}
$$

- Double soft theorems (especially for scalars)

Uniqueness Gauge invariance

- Consider a general (ordered) local function at four points, with mass dimension matching the expected amplitude:

$$
B_{4}\left(p^{2}\right)=a_{1} \frac{e_{1} \cdot e_{2} e_{3} \cdot p_{1} e_{4} \cdot p_{2}}{p_{1} \cdot p_{2}}+a_{2} \frac{e_{1} \cdot e_{2} e_{3} \cdot e_{4} p_{2} \cdot p_{3}}{p_{1} \cdot p_{2}}+60 \text { terms }
$$

- Impose gauge invariance, solve linear system in the a_{i} 's
- Unique solution which matches the amplitude! Locality and Unitarity follow automatically
- In general, the local ansatz will have a form

$$
B_{n}^{\mathrm{YM}}\left(p^{n-2}\right)=\sum_{i} \frac{N_{i}\left(p^{n-2}\right)}{P_{i}}
$$

- Locality assumption can be relaxed
- Proof by induction via a soft expansion
- Also works for gravity

Uniqueness Adler zero

- Consider general local ansatz, fake cubic structure

$$
B_{6}^{\mathrm{nlsm}}\left(p^{8}\right)=a_{1} \frac{N\left(p^{8}\right)}{\left(p_{1}+p_{2}\right)^{2}\left(p_{1}+p_{2}+p_{3}\right)^{2}\left(p_{5}+p_{6}\right)^{2}}+\ldots
$$

- Take soft limits $p_{i}=z p_{i}, z \rightarrow 0$, demand $\mathcal{O}(z)$ scaling
- Again a unique solution follows: the NLSM amplitude
- Proof via double soft expansion
- Crucial: no solution for lower mass dimension: $B_{n}^{\text {nlsm }}\left(p^{k}\right)$ with $[\mathcal{O}(z)]^{n}$: $k<n+2$ no solution; $k=n+2$ unique solution
- Also works for DBI, Special Galileon

Motivation for soft theorems

- When doing the formal soft limit expansion proof, one begins to wonder why are there no higher order theorems? Where is the info hidden?
- Higher order info is in fact present in different soft expansions
- This can be used to fully constrain amplitudes, now including higher corrections (up to F^{4} corrections for YM):

$$
B_{n+1} \rightarrow\left(S_{0}+S_{1}\right) A_{n} \Rightarrow B_{n+1}=A_{n+1}
$$

Uniqueness Soft theorems

- If a term evades both $\mathcal{O}(1 / z)$ leading and $\mathcal{O}\left(z^{0}\right)$ sub-leading orders, then it must go like $\mathcal{O}(z)$ in all particles
- But this is exactly the NLSM constraint: we have shown that there is a unique object that vanishes in all soft limits, $A_{n}^{\text {nlsm }}\left(p^{n+2}\right)$
- But YM ansatz has lower mass dimension is $B_{n}\left(p^{n-2}\right)$ (ignoring polarization vectors) so nothing in YM ansatz can escape soft theorems
- Therefore YM amplitude is completely fixed by imposing Soft Theorems in some number of particles

$$
B_{n+1} \rightarrow\left(S_{0}+S_{1}\right) A_{n} \Rightarrow B_{n+1}=A_{n+1}
$$

Uniqueness
 Soft theorems and higher corrections

- Compare the 6 point YM amplitude with the bound $B_{n}^{\mathrm{YM}}\left(p^{n-2}\right)$ vs $B_{n}^{\mathrm{nlsm}}\left(p^{n+2}\right)$
- What if we increase the mass dimension to match the bound?
- Add two powers of momenta, still not possible to form a NLSM amplitude
- Therefore, if we impose the soft theorem at this higher mass dimension:

$$
B_{n+1} \rightarrow\left(S_{0}+S_{1}\right) A_{n}^{F^{3}}
$$

- We get $B_{n+1}=A_{n+1}^{F^{3}}$!

Uniqueness
 Soft theorems and higher corrections

- Now increase by four powers, so NLSM is allowed, impose soft theorem:

$$
B_{n+1}\left(p^{n+3}\right) \rightarrow\left(S_{0}+S_{1}\right) A_{n}^{F^{4}}\left(p^{n+2}\right)
$$

- For even \# we get

$$
B_{n+1}=[\text { something satisfying soft theorems }]+(e . e)^{3} A_{n+1}^{n / s m}
$$

- For odd \# we get $B_{n+1}=A_{n+1}^{F^{4}}$ (all possible five solutions: one corresponding to $\left(F^{3}\right)^{2}$, and four to F^{4})

Uniqueness Soft operators and "soft" gauge invariance

- Soft theorems contain lots of info through the lower point amplitude, so maybe this is not so surprising. Can we get away with less?
- Instead of full soft theorem, only require:

$$
B_{n+1} \rightarrow\left(S_{0}+S_{1}\right) B_{n}
$$

- Amplitude is still unique solution (and still true for higher corrections)
- Crucially this even fixes the low point amplitude, so all the information is contained in the soft operator
- If we got this far, how about using even less info?
- Just impose gauge invariance up to sub-leading order in the soft particle. Still unique solution!
- Conclusion: soft particles carry enough information to fully constrain the amplitude

Uniqueness
 Leading vs Sub-leading soft theorems

- Are soft theorems independent?
- Impose just leading order soft theorem
- For odd \#, it is enough to fix the amplitude: subleading theorem doesn't contain any new information

Uniqueness Other theories

- This all works for GR, NLSM, DBI, even (broken) conformal dilaton theories
- GR and dilaton bound given by DBI
- GR satisfies up to $\mathcal{O}\left(z^{1}\right)$ soft theorems - only DBI has $\mathcal{O}\left(z^{2}\right)$ behavior
- NLSM and DBI bound given by Galileon

Conclusion

Some practical implications

- Easiest (ie. dumbest) way to generate amplitudes: write down ansatz, impose gauge invariance/Adler zero/soft operators
- Expedites checks of various formulas
- For example CHY is manifestly gauge invariant, so only need to check pole structure
- It proves the BCJ double copy:

$$
\mathrm{YM}=\sum_{i} \frac{c_{i} n_{i}}{s_{i}} \rightarrow \sum_{i} \frac{n_{i} n_{i}}{s_{i}}=\mathrm{GR}
$$

YM is gauge invariant on the support of the c_{i} satisfying Jacobi. If the n_{i} also satisfy Jacobi, then the double-copy is gauge invariant, so by uniqueness it must be the GR amplitude

Conclusion

Future questions

- There is also uniqueness from BCFW scaling - BCFW shifts in general D seem know something about Soft Theorems. Possible equivalence between BCFW scaling and soft behavior?
- Soft particles carry all amplitude information? Different perspective on BH information?
- Interesting that unitarity and locality can be derived from these abstract properties - is there some better reason for this (general inverse soft factor method) ?
- Do there exist forms of the amplitude which manifest eg. correct soft behavior?
- Loops, strings?

Bonus

Constructability and BCFW scaling

- Constructability means amplitudes can be built recursively, typically via a BCFW, or "on-shell" recursion
- The recursion involves a deformation $[i, j\rangle$ which schematically sends $p_{i} \rightarrow p_{i}+z q$ and $p_{j} \rightarrow p_{j}-z q$
- The recursion can be used if the theory is local, unitarity, and vanishes for large z

$$
A_{n}(1,2, \ldots, n)=\sum_{i} \frac{A_{i+1}(\hat{1}, \ldots, i, p) A_{n-i+1}(-p, i+1, \ldots, \hat{n})}{\left(p_{1}+\ldots, p_{i}\right)^{2}}
$$

- Proven in many ways that YM amplitudes scale as $1 / z$ for adjacent shifts, $1 / z^{2}$ for non-adjacent shifts, and gravity amplitudes scale as $1 / z^{2}$
- Scaling at large z considered mostly a (surprising) technicality, but I'll argue it can be considered a defining property of YM, GR

Bonus
 Uniqueness from BCFW scaling

- Consider the following $[i, j\rangle$ BCFW shift:

$$
\begin{array}{ll}
e_{i} \rightarrow \hat{e}_{i} & p_{i} \rightarrow p_{i}+z \hat{e}_{i} \\
e_{j} \rightarrow \hat{e}_{j}+z p_{i} \frac{\hat{e}_{i} \cdot e_{j}}{p_{i} \cdot p_{j}} & p_{j} \rightarrow p_{j}-z \hat{e}_{i}
\end{array}
$$

where $\hat{e}_{i}=e_{i}-p_{i} \frac{e_{i} \cdot p_{j}}{p_{i} \cdot p_{j}}$.

- Claim: There are unique objects which have the usual BCFW scaling under this shift ($1 / z$ for adjacent, $1 / z^{2}$ for non-adjacent or permutation invariant functions)
- Need uniqueness from Soft Theorems to prove that these objects are the amplitudes (check matching at leading and subleading order)
- Strongest possible claim: simple polynomial fixed to amplitude numerators by BCFW scaling
- BCFW scaling implies locality, unitarity, gauge invariance

Bonus
 Relation between BCFW and Soft theorems?

- Not completely trivial relation between the action of a BCFW shift and sub-leading operator:

$$
\begin{align*}
& S_{i}=e^{[\mu} q^{\nu]} J_{i}^{\mu \nu}=e^{[\mu} q^{\nu]} \frac{1}{q \cdot p_{i}}\left(e_{i}^{\mu} \frac{\partial}{\partial e_{i}^{\nu}}+p_{i}^{\mu} \frac{\partial}{\partial p_{i}^{\nu}}\right) \tag{1}\\
& K_{i} \equiv e^{\mu} q^{\nu} J_{i}^{\mu \nu} \tag{2}
\end{align*}
$$

- Consider some polynomial f, which doesn't depend on e, q
- Easy to see:

$$
\begin{equation*}
\operatorname{BCFW}_{[q, i\rangle}[f]=f+z K_{i}[f]+\mathcal{O}\left(z^{2}\right) \tag{3}
\end{equation*}
$$

- Schematically explains why $S_{0} A_{n}+S_{1} A_{n} \approx \mathcal{O}\left(z^{-1}\right)$
- Surprisingly close connection between soft operator and BCFW shift...both completely fix amplitude...something deeper going on?

